

User Manual RTG1002

Radar Target Generator

Edition: 005 Date: 19-Apr-18 Status: Released Issue

DOCUMENT CHARACTERISTICS

General			
	User Manual RTG1002		
	Radar Target Generator		
Edition:	005		
Edition Date:	19-Apr-18		
Status:	Released Issue		
Keywords:			
Abstract:			

Contact Information		
Author:	Erwin Maes / Jan Verlinden	
Editor:	Elke Vanuytven	
Contact Person:	Erwin Maes	
Tel:	+32 14 23 18 11	
E-mail Address:	support@intersoft-electronics.com	

Document Control Information				
Document Name:	IE-UM-00601-005 RTG1002 User Manual.odt			
Path: C:\Users\elke\Desktop\				
Host System:	DELL			
Software:	OpenOffice.org 3.0.1			
Size:	821021Bytes			

DOCUMENT CHANGE RECORD

Revision	Date	Reasons for change	Pages Affected	Approved by
001		First	All	EM
002		Towertrack, ballistic target generation	All	EM
003		Changes after revision	All	EM
004		Changes after 2 nd revision	All	EV
005		New snapshots after software update		EV

TABLE OF CONTENTS

1. TECHNICAL MANUAL RTG1002	11
1.1. Introduction	
1.2. Key Features	11
1.3. Hardware Description	
1.3.1 Block Diagram	
1.3.2. Connectors	
2. Remote Test Target	13
2.1. Theory	13
2.2. Software	
2.2.1. Parameters tab	
2.2.1.1. Radar parameters	
2.2.1.2. RTG parameters	
2.2.1.3. Target Setup Parameters	
2.2.2.1. Didactical Panel	
2.2.3. Scenario Tab	
2.2.4. Scenario Definition Window	
3. On Site Target Injection	30
3.1. Theory	
3.2. Software	
3.3. Parameters Tab	31
3.4. Fixed – or Moving Target Operating Mode	
	40
4.4 Introduction	0+
4.1.1. General	
4.2. DETAILS	
4.2.1. Prerequisites	
4.2.2. Syntax	
4.2.5. Colling life	
4.2.4.1. LOAD command	
4.2.4.2. START command	
4.2.4.3. RECORD command	
4.2.4.4. STOP command	47
4.2.4.5. CLOSE command	47
4.2.4.6. STATUS command	47

4.2.5. EXAMPLE

TABLE OF FIGURES

Figure 1: RTG 1002 front panel	11
Figure 2: Block Diagram RTG1002	12
Figure 3: Booting, RTG parameters	14
Figure 4: Parameters for the radar equation	15
Figure 5: Attenuator A vs frequency for modulator 1	16
Figure 6: List of components supllied with RTG1002 loss vs frequency	17
Figure 7: Setup tab, scope view of the received pulse	19
Figure 8: Pulse view with drop down list	20
Figure 9: Predicted peak power should match the maximum received power level	21
Figure 10: Predicted peak power in the didactical panel	22
Figure 11: Pulse view , RX power and Tx power with Adaptive Beam Modulation ON, fixed target	22
Figure 12: Pulse view of RTG recording	24
Figure 13: Filter setting and parameters of the RTG pulse viewer	25
Figure 14: Didactical panel with system info being logged	26
Figure 15: Power vs time of the scenario	27
Figure 16: Define speed scenario	29
Figure 17: Booting , RTG parameters	30
Figure 18: RTG on site parameters	31
Figure 19: Default antenna diagram	32
Figure 20: Select VPD curve	32
Figure 21: Radar coverage diagram, from a default antenna VPD	33
Figure 22: Coverage diagram for a theoretical cosecant square VPD	34
Figure 23: Attenuator A vs frequency for modulator 1	35
Figure 24: Define Jammer - Clutter settings for Modulator 2 vs azimuth	36
Figure 25: Parameters for fixed or moving target	37
Figure 26: Typical Airfield Surveillance Radar VPD, Tx on beam 1 and two Rx beams	38
Figure 27: Modulator 2 used to modulate a signal vs azimuth to simulate a jammer or interfering	
signals	39
Figure 28: Toolbox must be running to allow RPC	41
Figure 29: LVXMLRPCserver location	42
Figure 30: RASShelp	42
Figure 31: Configuration file for RPC	43
Figure 32: Preference file in case of this example	45
Figure 33: Preferences file for RTG on site target injection software	46
Figure 34: Example of RPC via the DOS command prompt	48

TABLE OF TABLES

Table 1: Effect of VPD selector o	the coverage and modulator settings	s
-----------------------------------	-------------------------------------	---

CONVENTIONS USED

Note: This icon to the left of bold italicized text denotes a note, which alerts you to important information.

Caution: This icon to the left of bold italicized text denotes a caution, which alerts you to the possibility of data loss or a system crash.

Warning: This icon to the left of bold italicized text denotes a warning, which alerts you to t he possibility of damage to you or your equipment.

GLOSSARY OF TERMS

ACP	Azimuth Change Pulse				
ADS-B	Automatic Dependent Surveillance, Broadcast				
Annex 10	Aeronautical Telecommunication, Annex 10 to the Convention on				
	International Civil Aviation, the principle international document				
	defining SSR				
ARP	Azimuth Reference Pulse				
ATC	Air Traffic Control				
COTS	Commercial Off The Shelf				
CPU	Computer Processing Unit				
CW	Continuous wave				
dB	Decibel				
Downlink	The signal path from aircraft to ground				
FL	Flight Level, unit of altitude (expressed in 100's of feet)				
FRUIT	False Replies Unsynchronized In Time, unwanted SSR replies				
	received by an interrogator which have been triggered by other				
	interrogators				
GPS	Global Positioning System				
	International Civil Aviation Organization				
	Interface Control Document				
IE	Intersoft Electronics				
IE	Intermediate Frequency				
" 1/0	Input/Output				
IP	Internet Protocol				
	Local Alea Network				
Monopulso	Large vertical Aperture (antenna) Reder-receiving processing technique used to provide a prociso				
Wohopuise	hearing measurement				
Meed	Monopulse Secondary Surveillance Radar				
MTD	Moving Target Detection				
MTI	Moving Target Indicator				
Multipath	Interference and distortion offects due to the procence of more				
Wullpath	than one path between transmitter and receiver				
NIRA					
	Original Equipment Manufacturer				
Dem Blot extractor	Signal proposing ognipment which converte receiver video inte				
FIOL EXITACION	digital target reports suitable for transmission by land lines				
DDI	Dian Desition Indicator				
	Pilan Position Indicator				
	Puise Repetition Frequency				
PSR	Primary Surveillance Radar Redia Detection And Denging				
Radama	Radio Delection And Ranging				
Radome	Radio-transparent window used to protect an antenna principally				
BACO B	against the effects of weather Dealer Analysis Compart Costones Deal time measurements				
RASS-R	Radar Analysis Support Systems – Real-time measurements				
KA55-5	Radar Analysis Support Systems – Site measurements				
	Radar Cross Section				
	Radar Data Processing (system)				
KF DTOO					
RIQC	Real Time Quality Control				
KX	Receiver				
SAC	System Area Code				
SIC	System Identification Code				

SLS	Side Lobe Suppression, a technique to avoid eliciting transponder replies in response to interrogations transmitted via antenna sidelobes
SLB	Side Lobe Blanking
SNR	Signal-to-Noise ratio
Squitter	Random reply by a transponder not triggered by an interrogation
SSR	Secondary Surveillance Radar
STC	Sensitivity Time Control
TACAN	Tactical Air Navigation
ТСР	Transmission Control Protocol
TIS-B	Traffic Information Services, Broadcast
Transponder	Airborne unit of the SSR system, detects an interrogator's
	transmission and responds with a coded reply stating either the aircraft's identity or its flight level
ТХ	Transmitter
Uplink	Ground-to-air signal path
UTC	Coordinated Universal Time

1. TECHNICAL MANUAL RTG1002

This document will describe the technical aspects of the Radar Target Generator RTG1002 and its usage in three different setups:

- 1. As a remote test target in a far field setup, using antennas.
- 2. As 'On site target injection' connected directly to the radars' Rx.
- 3. In combination with a towertrack, simulation of ballistic trajectories, is possible in the far field.

1.1. Introduction

This document describes the use of the Intersoft Electronics' Radar Target Generator (RTG1002) for Primary Radar purposes. The RTG1002 is basically designed to generate primary radar returns and can be placed in the field (Remote Test Target) or connected to a radar (on site target injection), in this setup a target can be generated on two channels, the two beams of an ATC radar for example.

In all cases, the RTG1002 will detect and preserve the radar pulse, apply a fixed and highly precise delay and retransmit the pulse with the appropriate power, pulse-width, frequency and Doppler shift.

The RTG1002 or Radar Target Generator is the key element to provide a true and correct Primary Radar Environment Simulation. The design was kept versatile, covering with one design the L and S band.

Figure 1: RTG 1002 front panel

For C-band frequencies there is RTGC1062

For X-band frequencies there is RTGX1063.

For UHF-band frequencies there is RTGU1085.

1.2. Key Features

The Radar Target Generator produces one or multiple programmable test target(s). The range, speed, Doppler speed, radar cross section and swerling model are programmable.

The target can be generated either remote from the field, passing through the radar antenna or injected via a coupler for what is called 'on site target generation'. On site injection allows to inject multiple targets in various directions on top of real clutter.

1.3. Hardware Description

1.3.1. Block Diagram

Figure 2: Block Diagram RTG1002

. .

1.3.2. Connectors

- J1 Rf Input Rx : +10dBm ..-30dBm , 1001MHz .. 3450MHz
- J2 Rf Input Monitor : output for monitor purposes = Rx input 8dB
- J3 Digital Delay Out: delayed signal, unequalized
- J4 Modulator 2 In : maximum input level +10dBm, +30dBm no damage
- J5 Modulator 2 Out :equalized output vs freq. maximum output level 0dBm
- J6 Rf Output Tx : equalized output vs freq. maximum output level 0dBm
- J7 Generator Out : output of white noise generator, -10 dBm maximum integrated output power
- J8 RASS : Rass bus, interface for encoder signals, trigger out and Gate output.
- J9 RASS : Rass bus, the same bus interface for encoder signals, trigger out and Gate output
- J10 GPS : DB9 connector for NMEA-protocol like Intersofts' compact weatherproof GPS, P619
- J11 SERIAL : serial output ICARUS or towertrack, motor control.
- J12 ETHERNET : connection to control the RTG1002 hardware.
- J13 Network 1 : local embedded PC network connection equivalent to J14
- J14 Network 2 : local embedded PC network connection equivalent to J13
- J15 DVI: Digital Video Interface, display output
- J16 USB2.0 : USB connection for keyboard and mouse.

2. REMOTE TEST TARGET

2.1. Theory

For Remote Test Target (RTT) usage the RTG1002 is deployed in the field, typically connected to two small horns or Log Periodic Antennas positioned on a pole or tripods with a limited height. This way, the radar antenna system becomes part of the test. The area where a target can be simulated is limited to the azimuth of choice and a range further than the chosen position. The simulated target can be moving radial or be fixed.

The fixed target can appear as point clutter (no Doppler) or can have a simulated Doppler frequency.

2.2. Software

Warning: Before you start making connections, estimate/calculate the distance of the setup. Whenever you are close to the radar (<200m) add some attenuation to Tx and Rx plug before you make the setup. The maximum power level at the input should not exceed m and the power level at the output should not exceed +20dBm

+10dBm and the power level at the output should not exceed +20dBm.

- 1. Load the **RTG1002 PSR Target Generation** software from the **Scenario Generation** button in the PSR Generation section of the RASS-S toolbox.
- 2. Make sure the network cable is connected between J12 and J13 or J14. Click the little white arrow in the top left corner to run the vi.

Figure 3: Booting, RTG parameters

3. On every available network connection there will be checked if there is an RTG connected.

🛃 R	TG2 Select_Client_MAC_a 🔀
	Multiple devices detected pleas select serial number.
	151/001/005 💌
	Select

4. If there is more than one target generator detected, connected to the same network segment (not via router but connected to a switch for example), a list will pop up and one can select which target generator to use. Then the calibration files and settings will be loaded into the FPGA to control the RTG1002. The HMI will indicate **Booting...**

If you want to control the RTG from another computer it's firewall must be turned off.

5. It is possible to connect the RTG1002 to network switch instead of directly to the embedded PC. Then then RTG1002 can be controlled by multiple users but only one at a time. Warning: if a single RTG1002 is already controlled by another computer on a network, a second computer can also control the target generator. This situation must be avoided. When this situation occurs an indicator will warn about this. The other user may change parameters, like the trigger level in the hardware without any feedback in your application. The data stream of the received pulses will split up in two

data streams to the two users, so half of the received pulses could be missing. There could be gaps visible in the shape of the received beam.

2.2.1. Parameters tab

These parameters must be downloaded into the hardware before they can have an effect.

Figure 4: Parameters for the radar equation

2.2.1.1. Radar parameters

Tx power: peak power of radar transmitter (subtract cable loss towards the radar antenna)

Antenna gain : Gain of radar Tx antenna, expressed in dBi (do not subtract the cable loss again)

Frequency : This frequency is used in the didactical panel to simulate the radar equation, for the test target. This frequency will be used to display the correct levels for the trigger in the RTG setup software tab. This frequency will be used for the power detector when the pulse data is displayed in scope mode (when the frequency is not yet measured).

Freq High and Freq Low : If Operating mode = Fixed target or Moving target, then these two parameters are used to clip the measured frequency to one of these limits when it is outside the interval [Freq low ...Freq high].

If Freq High is < 1401MHz then an L-band Low pass filter is used after the vector rotator before the sampling of the digital delay line. This will avoid harmonics of the Doppler rotation from being sampled. Therefore it is better to limit freq high to <1400MHz for L-band radars.

If Operating mode = white noise generation, then these two parameters will determine the bandwidth of the noise spectrum, reducing the bandwidth will increase the power/MHz for the noise signal. The maximum integrated power available at the generator output is around -10dBm.

2.2.1.2. RTG parameters

Antenna TX gain [dBi], Attenuator A [dB], Antenna Rx gain [dBi], Attenuator B [dB]:

These parameters can be entered versus frequency. Cable loss can be compensated for every frequency, since RTG1002 will perform a frequency measurement on the received pulse. In order to verify the correct use of the tables for compensation of the cable loss it is possible to display the Rx power and the Rx antenna power

- 1. CALCULATE the maximum peak power received by the RTG antenna. Take the following parameters into account radar Tx power and frequency, radar (Tx) antenna gain, distance of the setup and the gain of RTG Rx antenna. You can use the didactical panel in the software to assist the calculations.
- CALCULATE the attenuation needed for Attenuator B in the setup to reduce calculated peak power to +10dBm (trigger level possible +10dBm ... -35dBm RTG1002 or +5dBm ..-40dBm for RTGX). Enter the value and check the value for RTG Rx dBm.
- 3. Connect antenna, cables and attenuators to receive the pulses from the radar.
- 4. Create or load an equalize table for Attenuator B. This table will compensate variations in the cable loss vs frequency. You can add cables, attenuators, power splitters or amplifiers,... one by one.

Figure 5: Attenuator A vs frequency for modulator 1

In the example of the previous figure attenuator A consists of 3 separate components:2 attenuators of 30dB and 1 attenuator of 20dB, the total amount would be 80dB.

The loss of a cable depends on the frequency and the cable length. If for example an attenuation coefficient for the cable is 0.1dB/(m *GHz), you should multiply it by the cable length in meter and the frequency in GigaHertz. If you have 10meter of cable the loss would be 1dB at 1GHz and 3dB at 3GHz.

You can enter a frequency table with multiple points, with a precision of 3.7MHz. The software will interpolate the values in between data points, but it will not extrapolate.

In the example of the cable, if it is described with only two points at 1 and 3GHz, the values inside the interval will be interpolated but the loss at 3.3GHz will be considered the same as at 3GHz. So it is necessary to describe the losses up to the minimum and maximum frequency of operation.

Save As		annual loss and a	-			x
Save in:	👢 EXPORTS		- 3 🕫 🛙	"		
æ	Name	~		Date modified	Туре	•
	3 3m cable.txt 3			31/01/2014 15:26	Text Document	
Recent Places	10dB attenuate	or.txt		31/01/2014 15:24	Text Document	
	📄 10m cable.txt			31/01/2014 15:25	Text Document	
	20dB attenuate	or.txt	Type: Text Docu	iment 5	Text Document	
Desktop	30dB attenuate	or.txt	Size: 3,92 KB	5	Text Document	
	coupler ZX30-2	20-462HP+ [IN-CPL(IN)].txt	Date modified:	31/01/2014 15:25	Text Document	
	coupler ZX30-2	20-462HP+ [IN-CPL(OUT)].t	ĸt	31/01/2014 15:28	Text Document	
Libraries	coupler ZX30-2	20-462HP+ [IN-OUT].txt		31/01/2014 15:29	Text Document	
	coupler ZX30-20-462HP+ [OUT-CPL(IN)].txt		31/01/2014 15:30	Text Document		
	coupler ZX30-2	20-462HP+ [OUT-CPL(OUT)]].txt	31/01/2014 15:30	Text Document	Ξ
Computer	coupler ZX30-2	20-BD-S+ [IN-CPL(IN)].txt		31/01/2014 15:32	Text Document	
	coupler ZX30-2	20-BD-S+ [IN-CPL(OUT)].txt		31/01/2014 15:32	Text Document	
	coupler ZX30-2	20-BD-S+ [IN-OUT].txt		31/01/2014 15:38	Text Document	
Network	coupler ZX30-2	20-BD-S+ [OUT-CPL(IN)].txt		31/01/2014 15:39	Text Document	
	coupler ZX30-2	20-BD-S+ [OUT-CPL(OUT)].t	txt	31/01/2014 15:39	Text Document	
	power splitter	power splitter ZX10R-14-S+ [1-2].txt 31/01/20			Text Document	
	power splitter ZX10R-14-S+ [S - 1].txt 31/01/2014 16:		31/01/2014 16:02	Text Document		
	power splitter	ZX10R-14-S+ [S-2].txt		31/01/2014 16:03	Text Document	-
	•	•			•	
	File <u>n</u> ame:	10m cable.txt			• ОК	
	Save as type:	All Files (*.*)			✓ Cancel	

Figure 6: List of components supllied with RTG1002 loss vs frequency

- 1. The loss of the cable set and all microwave components for L- and S-band applications, supplied with RTG1002, have all been measured versus frequency. These files are available upon request or they could be found in the general campaign in the folder exports.
- 2. Look in scope view at the received pulses, adjust the parameters for the frequency measurement. If the radar uses different pulse lengths, the shortest pulse width will determine how to measure the frequency. The power level indicated in the scope view is only calibrated for the frequency entered as a parameter (the frequency is not yet measured in this view) and for the trigger level also.
- 3. Make sure the received peak power is the same as the predicted peak power. Especially when the adaptive beam modulation is used. Every dB of Rx power received less then the predicted peak power will be reduced from the calculated Tx power. If the powers do not match check the setup. Maybe there is a ground reflection that increases or decreases the power. If you can change the height of the antenna (possible on a tripod) a variation of 1 meter may already indicate this effect for S-band radar at a distance of a few hundreds of meter (depending on the radar height).
- 4. View the input data in *Pulse View* mode. The following views are available:

RX power RTG input : sampled at Sample Offset ... us, after the trigger event.

Frequency: counted, starting from Sample Offset ... us, after the trigger event during the 'frequency measurement period'

Pulse width: time between rising and falling edge of the trigger event. If the trigger level is at -3dB from the pulse level, then pulse width is measured the way it should be.

Period: elapsed time between the previous trigger event and current one.

Rx antenna power: = RX power RTG input + attenuator B f(measured frequency) [equalize table mod1]

Tx power RTG output: calculated power of the target, you can verify this power on a spectrum analyzer. Do not verify this power level on a broadband power detector, because of the spurious signals. You can see the real time effect of switching the adaptive beam modulation on or off in this view.

Modulator 2: = modulator 2 - attenuator A f(measured frequency) [equalize table mod2] - attenuator B f(measured frequency) [equalize table mod2]

This is the value of attenuation between the two SMA-connectors of modulator 2. If modulator 2 is used as an attenuator of -20dB for example but when it is connected with two cables of 2dB loss for the measured frequency, then the window will indicate the remaining decibels, in this example 16dB.

Time stamp: GPS time stamp of the trigger event, when GPS is connected. If no GPS then this is a relative time stamp. This may be useful to interpret the timing of the sidelobes of the antenna, when the trigger level is too low.

2.2.1.3. Target Setup Parameters

Type: The type control determines which swerling case type is being generated. You have the selection between Fixed RCS and Swerling case I through IV.

- A fixed RCS
- Swerling I modulates the pulse power from scan to scan with a Rayleigh distribution
- Swerling II modulates the pulse power from pulse to pulse with a Rayleigh distribution
- Swerling III modulates the pulse power from scan to scan with a modified distribution (in case of one main scattering element)
- Swerling IV modulates the pulse power from pulse to pulse with a Rayleigh distribution (in case of one main scattering element)

RCS: The simulated Radar Cross Section: This parameter determines the amount of power that is being reflected by a real target and as such also how much power the RTG1002 sends back to the radar. The power as it would be received by the radar in the simulated condition can be verified in the didactical drawing.

Following parameters are only relevant when the scenario mode is set to fixed target. For moving target, the scenario data is used:

- **Target Range**: this control sets the target range as it would appear on the radar's PPI or output data, for a fixed target. This control can be set by means of the slider or numerical control.
- *Elevation*: The elevation of the simulated target. This parameter is used to calculate the lens effect and the atmospheric attenuation for the target.
- **Doppler frequency**: This control allows the user to set the correct Doppler frequency for fixed (static) targets. For moving targets, the Doppler is automatically created using the target known

speed.

Doppler speed: The speed is linked to the Doppler frequency and visa-versa. If the user modifies the speed, the frequency is recalculated and when the user enters the frequency, the speed is recalculated.

2.2.2. Setup tab

The controls in this software tab have an immediate effect when they are changed, no need to download them first like the parameters.

Figure 7: Setup tab, scope view of the received pulse

- 1. Select the appropriate *Trigger* level.
- 2. In scope view it is possible to increase the buffer size, to visualize very large pulse widths or very long pulse periods.

3. Pulse view in two windows, 8 different views are selectable from a drop down list, shown in the next figure.

Figure 8: Pulse view with drop down list

4. Doppler Update :

Continuous will generate intrapulse doppler as well as interpulse doppler. It means that range updates (steps of 21.4 mm) can happen inside the returned pulse. As a result the pulse length can be slightly shorter for high velocity targets flying inbound. However the phase slope inside the pulse will still be linear because of the vector rotator that will compensate for the steps. A target with a speed of 214m/s will need a range update every 100us, If the radar pulse length is 50 us there is a 50% chance of an update in the pulse.

Triggered means the range will be updated from pulse to pulse, no range updates will happen inside the returned pulse. Therefore the pulse will have the same length as the received pulse. There will be no intrapulse Doppler shift, but only interpulse Doppler. The vector rotator will not rotating as long as the pulse is detected, but it will update its position with every new trigger event. This mode can be

used when analyzing the range Doppler compensation on high velocity targets.

5. *Forced Trigger mode*: Will allow the target generator to create trigger events every Xus (determined by the pulse period) It allows to delay continuous wave signals, could be useful on FMCW radar.

On pulse Doppler radar, this checkbox should be off, for normal operation.

6. **Adaptive beam modulation**: when OFF, RTG1002 will return the signal level calculated in the didactical panel, regardless of the power that was received. This behavior is similar to the operation of RTG698, predecessor of RTG1002. When ON, the return power of RTG1002 will be adjusted according to the received power, the calculated peak power will be used as a relative reference.

Figure 9: Predicted peak power should match the maximum received power level

7. The predicted peak power is displayed in the didactical panel, it can also be viewed in the pulse view window of RTG setup.

8. The predicted peak power is -0.2dBm in this example and the peak power measured on the beam dwell is +0.5dBm. Then RTG1002 will return 0.7dB less then precalculated peak power level for the test target with a given RCS. This will generate a more realistic test target especially when the radar has the ability to point the transmit beam in different ways. On the other hand it will double the effect of 'not taking the cable loss into account' on the generated RCS, so it should be used with some precaution.

Figure 11: Pulse view , RX power and Tx power with Adaptive Beam Modulation ON, fixed target

9. The data, available in pulse view, can be recorded in a logfile.

This TAB separated file can be opened as a spreadsheet import.

🖻 CI	CLIPPER_130827_162757 - LibreOffice Calc											
<u>F</u> ile	<u>File Edit View Insert Format Tools Data Window H</u> elp											
	: 🖬 🗝 🕞 🔗 📝 🔝 🖶 🐯 🥙 💖 🖡 📴 🔹 🝰 🖘 🔿 🔹 🔝 :↓ :↑ 🧉 🛸											
							»					
A1			💌 💃 💈	=	0							◄
	A	В	С	D	E	F	G	н	I	J	к	
1	0	-0.217	1031.25	0.3	6553.5	10.5	-25	-9.5	52064.24			H
2	0	-0.217	1031.25	0.59	8.2	12	-23.5	-8	52068.379			
3	0	-0.217	1031.25	0.59	1911.7	12	-23.5	-8	52068.379			
4	0	-0.217	1031.25	0.63	21.3	13.5	-22	-6.5	52068.381			
5	0	-0.217	1031.25	0.63	2090.7	14	-21.5	-6	52068.381			
6	0	-0.217	1031.25	0.64	8.2	14.5	-21	-5.5	52068.383			
7	0	-0.217	1031.25	0.64	1911.7	14.5	-21	-5.5	52068.383			
8	0	-0.217	1031.25	0.67	21.2	15.5	-20	-4.5	52068.385			
9	0	-0.217	1031.25	0.67	2090.7	15.5	-20	-4.5	52068.385			
10	0	-0.217	1031.25	0.67	8.2	16.5	-19	-3.5	52068.387			~
		Shee	t1 / 🔶 /			<					>	I
Shee	t1/1		Default				ß	S	um=0 -		+ 100	1%

10. The Log file can be converted into a .pls file

.

. .

Figure 12: Pulse view of RTG recording

Figure 13: Filter setting and parameters of the RTG pulse viewer

2.2.2.1. Didactical Panel

The didactical panel contains a number of calculated power fields, each of which is calculated from the parameters entered above. The most important result from these calculations is the predicted RTG output power and thus the modulator settings. When adaptive beam modulation is ON, the input power is just as important, make sure it is within the linear range of (+10 ... -35dBm).

There is more then 90dB dB of dynamic range to modulate the output power on all RTG models. This corresponds to more then 7 range octaves (12dB) or a max range/min range ratio of 128. In other words, if you match all the attenuators of the setup perfectly and leave 18 dB of margin for the beam modulation it would be possible to fly one specific sized target from 1nm up to 64nm using the full 90dB modulator range.

This didactical panel will help the user to figure out what is possible and what not with the current attenuator values. This has to be done both in hardware and in software.

Figure 14: Didactical panel with system info being logged

When the checkbox under the picture of RTG1002 is selected, a log file with system info is created in the current campaign/report. During the design of this device it has been useful to have this information, some of the voltages have proven to be very critical. The temperature could be useful, the rest is intended to find a potential problem. The log file will not exceed 1MB filesize, so it is easy to send to Intersoft Electronics for analysis.

2.2.3. Scenario Tab

You can view the selected scenario in the scenario tab, when it is compiled, downloaded to the hardware. select the *Scenario* tab.

- The scenario graph shows you the scenario range or speed versus time.
- The Y scale menu allows selection between range in [Km], [Nm] or [us]. Also the speed can be seen in [m/s], [Nm/h] or the power can be checked.

Figure 15: Power vs time of the scenario

- The output power will clip at 0dBm. There is no warning when you prepare the scenario if some levels are out of range. The warning
 Out of range! RTG output power [0.0 ... -114,5dBm]
 will be displayed when the clipped scenario is running and when this error happens, in case of the
 example after more then 1 minute. Therefore, one should check the power levels calculated for the
 scenario in advance. Decrease the value for attenuator A, both in hardware and software to avoid
 such a situation.
 The scenario can be recorded when it is running, A log file of range vs time (UTC time when GPS is
- The scenario can be recorded when it is running, A log file of range vs time (UTC time when GPS is connected) is created each time the scenario runs. This file can be used to determine the range accuracy or process delay of the radar.

When the scenario is repeated a new file is created each time with the system time in the filename.

The text file contains two numbers

target range, expressed in meter: 36793.788m

Seconds past UTC midnight 45973.525 sec (when valid GPS data is connected) the file in the example was created on 14h46m13sec in a time zone UTC +2

OR when there is no valid GPS data connected the time is just a relative time stamp of the seconds that have past after booting RTG1002.

CLIPPER_130	827_144613 - Notepad	
<u>File E</u> dit F <u>o</u> rmat	<u>V</u> iew <u>H</u> elp	
36793.788 36587.017 36437.035 36288.360 36073.280 35930.729 35746.913 35598.323 35386.734 35241.784 35056.641 34848.820 34695.370 34516.415 34341.315 34090.988 33912.055 33801.988 33614.661 33439.389 33288.294	45973.525 45974.215 45974.715 45975.210 45975.927 45976.402 45977.015 45977.510 45978.216 45978.699 45979.316 45980.009 45980.520 45981.117 45981.117 45981.700 45982.535 45983.131 45983.131 45983.498 45984.707 45985.211	
<		≥:

Range Pulse enable

Ext TTL start Scenario

For the towertrack application: the checkbox *Range Pulse Enable* will create a TTL pulse on the grey BNC every crossing of a 100m marker in the scenario relative to the radar.

The checkbox *Ext TTL start scenario* will make the target generator wait for a start event. This start for the scenario will be generated by the motor when it is IN POSITION, in case of the towertrack application.

2.2.4. Scenario Definition Window

In order to define a scenario, click the **Scenario definition** 4 button.

This window allows you to define the scenario of the flying target.

• •

Figure 16: Define speed scenario

Creating a scenario goes in three steps, usually:

- 1. range (m, km, us or Nm)
- 2. speed (m/s, km/h, Nm/h or Hz Doppler (for frequency for the parameters tab)
- 3. duration (seconds, Nm or km)

A typical beginners mistake would be to define first range and duration and then speed, this would create a problem when the duration is expressed as a distance (the speed used would be 0m/s, it would take forever to cross the distance resulting in a lack of memory type of error).

3. ON SITE TARGET INJECTION

3.1. Theory

For on site target injection RTG1002 is directly connected to the radar. In this way, multiple targets can be generated in various directions, on top of the existing radar environment, the current clutter situation. Targets can be programmed freely with any speed or RCS as long as there is only one target generated per beam dwell. If you want to test the resolution of the radar, resolving a 2 target overlap, you'll need two target generators.

The vertical antenna diagram can be loaded from a file for simulation. If the radar has two antennas on reception like most of the ATC radars, these two beams can be simulated simultaneous.

3.2. Software

1. Load the *RTG1002 on site Target Generation* software from the *Scenario Generation* button in the PSR Generation section of the RASS-S toolbox.

Figure 17: Booting , RTG parameters

2. On every available network connection there will be checked if there is a target generator connected.

If there is more than one target generator detected, connected to the same network segment (not via router but connected to a switch for example) a list will pop up and one can select which target generator to use. Then the calibration files and settings will be loaded into the FPGA to control the RTG1002. The HMI will indicate **Booting...**

3.3. Parameters Tab

• • • • • • • • •	Scen	ario Running		v7.2.0.0
TG Setup Parameters Scenario	Operatin	g mode: Moving	Target Repeat?	
TG Parameters	Radar Paramete	ers	Target Setup (Moving and Fixed)	Info ACP/ARP
Mod1 Mod 2	TxPower	70.0 🚖 [dBm]	Type Fixed RCS 💌 4.194 🚔	[s] rev. (s) ARP time
	Antenna Gain Tx	33.0 🚖 [dBi]	RCS 10.0 (dBsm)	4.194 25:02:27.0
Attenuator A 30.0 [dB]	Antenna Gain Rx	33.0 🚖 [dBi]	Elevation 4.01 [deg]	N
Attenuator B 90.0 [dB]	Frequency	8500.00 🚖 🔲 Fix?	Altitude 25000 🔶 [ft]	
	Freq high	10498 🔶 [MHz]	Doppler Freq 6804.71 [Hz]	
Setup path C:\CAMPAIGN\RTGX\SCENARIO\	Freq low	8500 🔶 [MHz]	Radial Speed 0.0 🚖 [m/s] 💌	6 91.19
Onsite equalize Setup	Station Height	20.0 🚔 [m]	Target Azimuth 10.000 🚖 [deg]	# deg
	Revolution time	4 104	Nr targets 10	Trigger
CPR 14 bit - V	Propagation Par	ameters	Nr scans 10	
	Extra Att fix	0.0 🚖 [dB]	Replication factor 1 🚖 300.0 🔶 I	Delay # TPR
	Extra Att var	0.000 🚖 [dB/Km]	Tangential change 0.00 🚖 [deg/scan]	
lodulator 2 usage RIG 2nd chan	Lens-effect?		Target range 100.000 🚔 [Km] 💌	Target Info 🥥 ID 0
dB ant. beamwidth 1.80 🚔 📃 [degrees]	Atmospheric att	· 📃 🔯	·	Range 667.128 us -
ulse Gen Length 100.00 🚖 🔲 [us]	VPD model 4	/3 Earth 💌	0 100 200 300 400 500 600 7	05 Power -117.05 [dBm]
			Range delay 667 128 US	Azimuth 10 [deg]
	Path loss<	-> 262.0 dB		Speed 0 [Nm/h]
	Lens-effec	t 0.0 dB	Dog 10.00 to 1	RCS 10 [dBsm]
The Deven	Atm loss	0.0 dB	RCS [10.00 [[dBsm]	Elevation 4.01 [deg]
1x Pwr [70.00]	Bm Extra att	0.0 dB		Altitude 25000 [Feet]
-117.05				Scan nr 6
Target Re	eturn 2			Time 03:02:27
A 71				
				GPS info 🧶 🔴
Υ h				Latitude 00:00:00.000
Ψ				Longitude 00:00:00.000
Radar Tx Radar Rx	A B	RTG Rx -20.0 dBm		Altitude 0
		RTG Tx -87.05 dBm		Local Time 02:00:00
				PPS count 0
Log syst	em info v00.12		The section lands and an Deday Descent	

Figure 18: RTG on site parameters

- 3. Enter parameters of the radar, Tx power antenna gain of Tx antenna and Rx antenna.
- 4. The horizontal 3dB beam width of the radar antenna must be entered in section of RTG parameters.

A typical value is 1.4degree for most ATC radar.

- 5. Next to the 3dB ant. beamwidth parameter is a checkbox 'flat beam enable'. When this checkbox is selected the horizontal beam modulation is disabled and the target will be generated over the 3dB beamwidth with the power level, calculated for the middle of the beam. You can use this function when you want to inject a ring with constant power level at a certain delay, when testing the receiver for example. In this case, increase the 3dB beamwidth to 360/number of targets.
- 6. Load a VPD file for the simulation, click on the third button in the toolbar.

Figure 19: Default antenna diagram

- 7. The default antenna diagram, a typical ASR antenna with two antenna beams, is shown.
- 8. Use this e button to select a vertical antenna diagram. A dialog will allow to select a tab separated file, a .slr or .vpd- file (file format from RASS-S for VPD, the result from a solar recording). If you click the cancel button, you can still use the default diagram. Just click the third button from the left.

9.

Save in:		G 🤣 📂 🛄 🕶
Pa	Name	Date modified
	ASR	22/07/2009 14:36
Recent Places	ASR.slr	3/06/2009 14:29
	D_Solarcrv.slr	5/02/2003 7:55
·	demo.slr	4/06/2007 16:41
Desktop	demo.vpd	4/06/2007 16:33
	For_In_Site RTG.slr	4/06/2007 17:23
	Hyperlog70 sn001HVp20120504_VPD	8/05/2012 17:08
Libraries	Imported.slr	4/06/2007 17:23
	RTG on site tuning ASR	3/06/2009 10:33
	solar tabfile	25/03/2014 10:13
Computer	Solar.slr	28/07/2004 16:50
	star2000.slr	3/06/2009 14:29
Network	↓ und from tout	17/04/2012 12:00
	File name:	• ок

Figure 20: Select VPD curve

10. The radar coverage diagram will be displayed for the selected or the default VPD. Enter the correct Radar sensitivity, MDS level (after pulse compression and MTD).

Figure 21: Radar coverage diagram, from a default antenna VPD

11. Sometimes you may need a constant power for a moving target, for this purpose there is a theoretical perfect cosecant square VPD available. The corresponding coverage diagram is therefore flat.

. . . .

Figure 22: Coverage diagram for a theoretical cosecant square VPD

- 12. If you want to load a tab separated spreadsheet file, click
- 13. Enter *RTG Parameters* of the cables used in the setup. Create the connection between the radar transmitter and RTG1002 receiver, connector J1, preferably via a coupler or sufficient attenuation. The value of this coupler together with additional attenuators and cable losses is *attenuator B*, a software parameter. The input of RTG1002 is protected with a limiter (P1dB @ +11dBm), the input dynamic range is +5dBm ..-40dBm. Adjust the attenuator values to shift the peak power level within the dynamic range.
- 14. Create the connection between the RTG1002 output, connector J2, and the radar receiver preferably via a coupler so the antenna can still be used to receive some clutter. The value of this coupler together with additional attenuators and cable losses is *attenuator A*, a software parameter.
- 15. Attenuator A can be described vs frequency for modulator 1 and modulator 2. The description vs frequency for attenuator B is only available under modulator 1, since there is only one input.

RTG2 cable loss versus frequency.vi		×
	Attenuation setup RTG1002	
Attenuator A	Attenuator A 90.0 85.0 80.0 75.0 70.0 Frequency [MHz] Attenuation [dB]	3500
30dB 20dB N	ame : 30dB Frequency [MHz] 1001.95 1005.86 1009.77 1013.67 1017.58 1021.48 1025.39 1 Attenuation [dB] 30.0 34.0 34.0 30dB 34.0 30.0 30.0 34.0 50.0 28.0 26.0 1000.0 1250.0 1500.0 1750.0 200.0 2250.0 250.0 3000.0 3250.0 3 Frequency [MHz] Frequency [MHz] Attenuation [dB]	1029.30 1 1029.30 1 1 2 3500.0
Setup loaded from: C:\CAMPAIGN-S6	RTG2\PREFS\Onsite equalize Setup Mod1	

Figure 23: Attenuator A vs frequency for modulator 1

In the example of the previous figure attenuator A consists of 3 separate components. 2 attenuators of 30dB and 1 attenuator of 20dB, the total amount would 80dB.

The loss of a cable depends on the frequency, for example 0.1dB/(m *GHz). If you have 10meter of cable the loss would be 1dB at 1 GHz and 3dB at 3GHz.

You can enter a frequency table with multiple points, with a precision of 3.7MHz. The software will interpolate the values in between data points, but it will not extrapolate.

In the example of the cable if it is described with only two points at 1 and 3GHz, the values inside the interval will be interpolated but the loss at 3.3GHz will be considered the same as at 3GHz. So it is necessary to describe the losses up to the minimum and maximum frequency of operation.

Modulator 2 can be used as a software controlled, fixed(vs azimuth) step attenuator.

It can be used to simulate the high coverage beam, select a VPD and setting 'RTG2nd chan' for the usage of modulator 2.

Modulator2	Attenuation
Modulator 2 usage	✓ RTG 2nd chan
3dB ant. beamwidth	Jammer/Clutt Ext Jammer/Clutt Int
Pulse Gen Length	100,00 🌲 🔤 [us]

It is possible to use Modulator 2 to modulate a signal from a noise generator or an external jammer vs azimuth.

Figure 24: Define Jammer - Clutter settings for Modulator 2 vs azimuth

. .

3.4. Fixed – or Moving Target Operating Mode

1. Create a simple scenario by entering these parameters

Target Setup	(Mo	ving and	Fixe	ed)
Туре	Fib	ced RCS	\mathbf{T}]
RCS		20,0	٢	[dBsm]
Elevation		2,65		[deg]
Altitude		23000	٢	[ft]
Doppler Freq		1921,92		[Hz]
Radial Speed		-200,0	٢	[Nm/h] 💌
Target Azimut	h	10,000	-	[deg]
Nr targets		10	٢]
Nr scans		200	\$	
Replication fac	ctor	1	-	300,0 🚖 Delay
Tangential cha	ange	0,00	-	[deg/scan]
Target range		70,000		[Nm] 💌
0 50 10	00	150 200	250	300 380

Figure 25: Parameters for fixed or moving target

2. This scenario will create 10 targets with RCS of 100m2. The first target at 10 degrees and rest with equidistant intervals (36 degrees).

All these targets will start at 70nm and fly inbound with a speed of 200 knots at a constant altitude of 23000feet.

 The Replication Factor should be 1, for sensitivity tests. It is possible to replicate the test target every xx Nm/Km/microsecconds (same as the unit selection of the target range). The minimum delay for replication is the pulse width + 1µs.

4. Select an antenna diagram from a VPD file for the simulation of the altitude of the test target. When the radar transmits on the low coverage beam and uses two beams on reception, then select the third option for VPD usage, as in the next figure. Place the sma-sma bridge adapter between the monitor output of the digital delay line and the input of modulator2.

Figure 26: Typical Airfield Surveillance Radar VPD, Tx on beam 1 and two Rx beams

		RTG1002 Modulator 1	RTG 1002 Modulator 2
1	Tx beam 1 ; Rx beam 1	1 + 1 coverage	1 +1 coverage
2	Tx beam 2 ; Rx beam 2	2 + 2 coverage	2 + 2 coverage
3	Tx beam 1 ; Rx beam 1 & 2	1 + 1 coverage	1 + 2 coverage (= 2 + 1 coverage)
4	Tx beam 2 ; Rx beam 1 & 2	2 + 2 coverage	1 + 2 coverage (= 2 + 1 coverage)
5	Tx beam 3 ; Rx beam 1 & 2	3 +1 coverage	3 + 2 coverage

Table 1: Effect of VPD selector on the coverage and modulator settings

.

.

Verify the output powers injected in the radar vs range. Make sure the powers are within the available dynamic range indicated by the horizontal lines in red and blue color.

Figure 27: Modulator 2 used to modulate a signal vs azimuth to simulate a jammer or interfering signals.

Verify the RTG1002 output power vs azimuth. This view is selectable for every scan nr of the scenario. Modulator 2 setting will depend on the the use of modulator 2 as well.

	Operating mode:	RES scenario	⊻ 🔲 Repeat?		
	E-UM-00601-005 RTG1002	User Manual.od	t	39/48	

4. REMOTE PROCEDURE CALL

4.1. Introduction

4.1.1. General

Since version 7.0.4, we have implemented a Command line control of SOME vi's. Not all vi's can be controlled this way, we started with the RES, RTG2 and ADSB Tools. Later more vi's that can be controlled this way upon request.

Following instructions are supported since v 7.0.5.20:

-LOAD: This instruction loads a VI, when the RASS-S7 toolbox is running. You can either load or load plus run a tool.

-START: This instruction starts a vi, similar to clicking the START button on the main panel. This instruction also allows the preloading of the datafile (e.g. scenario) prior to running this.

-CLOSE: this instruction closes the panel of a vi.

-STOP: this instruction stops a vi, similar to clicking the STOP button on the main panel of the vi.

-RECORD: this instruction starts a recording, similar to hitting the record button on the main panel of the vi.

-STATUS: for batch file processing, this instruction allows you to retrieve the status of any VI

Following Tools are currently supported

- -RES Main vi reference 60
- -RES+RSE_Main_Control.vi reference 230
- -RFA ADSB control vi reference 223
- -RES_ADSB_Control.vi: vi reference 191
- -RTG2 Remote Target Generation.vi: vi reference 247
- -RTG2 On-Site Target Injection.vi: vi reference 246

4.1.2. Installation

To install this tool, you should either use the new installer of RASS-S v7.0.5.20 or later.

4.2. DETAILS

4.2.1. Prerequisites

In order to operate the Command line control, as a minimum the RASS-S7 toolbox must be running. The toolbox will start a RPC (remote procedure call) server.

Figure 28: Toolbox must be running to allow RPC

4.2.2. Syntax

The commands can be sent from the command line, using the "RASS" command. The corresponding RASS.exe can be found in the installed C: or D: disk, in the RASS-S7\LVXMLRPCServer folder.

The RASS.exe can be executed locally on RTG1002 or on a remote Windows PC. If the remote PC is chosen then you have to copy following folder to that PC:

Figure 29: LVXMLRPCserver location

You should add a "path" pointing to this folder if you want to use the command from other locations or in batch (.bat) files.

The RASS command has the following syntax:

Beware! This is case sensitive!

C:\WINDOWS\system32\cmd.exe	- 🗆 🗙						
Microsoft Windows XP [Version 5.1.2600] (C) Copyright 1985-2001 Microsoft Corp.							
C:\Documents and Settings\alain.INVENTIVE>CD \setminus							
C:\>CD RASS-S7							
C:\RASS-S7>CD LUXMLRPCServer							
C:\RASS-S7\LUXMLRPCServer>RASShelp Version : 1.1.0 Allowed options: help produce help message conf arg configuration file path logfileDir arg directory path for logfiles logLevel arg Mask for logging deta: -h [host] arg XMLRPC host -p [port] arg XMLRPC host port number -c [command] arg command arguments							
C:\RASS-S7\LUXMLRPCServer>_	-						
	► //						

Figure 30: RASS --help

RASS -help creates a help message

RASS –conf *arg* sets the configuration file (see further) path. Default this is in the same directory as the RASS.exe file.

RASS -logfileDir arg sets the directory for the logfile with possible error messages

- RASS -logLevel arg sets the mask for the level of logging data
- RASS -h arg sets the host IP number (is be set to localhost in config file)
- RASS --h arg sets the host port number (should be set to 9000 in config file)
- RASS -c arg Sends the actual XMLRPC command to RASS-S

4.2.3. Config file

The RASS configuration file is typically placed in the same directory as the RASS.exe file, and contains the XML code that defines the port and host IP used by the XML RPC engine.

Figure 31: Configuration file for RPC

You can change the host parameter to a different IP address. The RASS RPC always uses port #9000.

4.2.4. Sending Commands

In practice, only the RASS –c arg syntax will be used.

Arg is the argument of the command, and should therefore be put between quotes.

As there are 6 possible commands, following arguments can be used:

4.2.4.1. LOAD command

The load commands will load a RASS-S tool. The load command syntax is

RASS -c "LOAD vi_reference command" (example RASS - c "LOAD 246 2")

The *vi_refence* is the index number of the tool in the internal RASS-S application database list. At this moment, these vi's support RPC: The Vi reference nr is added

-RES Main .vi : 60

-RES+RSE Main .vi : 230

-RFA ADSB control.vi : 223

-RTG2 Remote Target Generation.vi: vi reference 246

-RTG2 On-Site Target Injection.vi: vi reference 247

The Command can be 0, 1 or 2. 0 does nothing, 1 loads the vi, and 2 loads and runs the vi.

4.2.4.2. START command

The start commands will start a preloaded RASS-S tool and is similar as clicking the "Start" button on a tool.

The start command syntax is . Mind the Double quotes! The (optional) filename is a string that needs to be enclosed in quotes

RASS -c "START *vi_reference [Filename]*" (example RASS - c "START 246 "PSR" ")

Beware! The filename can not contain SPACE (\20) characters

The *vi_refence* is the index number of the tool in the internal RASS-S application database list.

The Filename is the name of the scenario folder (directory) in the current CAMPAIGN folder of RASS-S.

If you do not include a filename, it is assumed a scenario folder is preloaded in the tool, or the previously selected file will be played again.

Filename can be a single folder or a full patch (e.g. D:\CAMPAIGN-S6\DEMO\SCENARIO\PSR)

Before the scenario is launched prefs stored in this campaign folder will be loaded. And the scenario will be downloaded automatically before executing the run command.

Figure 32: Preference file in case of this example

Beware! Put the pathname between quotes , so at the end of the command, there should be two quotes!

Preferences are stored automatically if a scenario is started into the scenario folder. So next time if the scenario is launched trough RPC the prefs will be loaded like earlier prepared. Next figure will show an example of a preference file. (This file could be edited manually).

.

Z D:\CAMP	AIGN-S6\DEMO\SCENARIO\PSR\RTG2 PREFS ONSITE - Notepad++	
<u>File E</u> dit <u>S</u>	earch <u>V</u> iew For <u>m</u> at Language Se <u>t</u> tings Macro Run TextFX Plugins <u>W</u> indow <u>?</u>	X
: 🕞 🖨 🗄	i 🖻 🗟 🕞 🌡 în în 🗩 d' 📾 🐜 🔍 🔍 🖫 🚍 🚍 1 🗐	»
E RASS_co	nntig.xml 📋 RTG1002_CAL#008 📄 RTG2 PREFS ONSITE	
19	Target Setup.RCS=30.000000	
20	Target Setup.Elevation=7.016548	
21	Target Setup.Altitude=25000.000000	
22	Target Setup.Doppler Freq=0.000000	
23	Target Setup.Doppler Speed=-300.000000	
24	Target Setup.Unit spd=0	
25	Target Setup.Target Azimuth=10.000000	
26	Target Setup.Nr targets=1.000000	
27	Target Setup.Nr scans Radial:=17	
28	Target Setup.Tangential change=0.000000	
29	Target Setup.Range Slider=60.000000	
30	Target Setup.Unit=1	
31	Target Setup.Unit Range=0	
32	Target Setup.ID=0	
33	Target Setup.Swirling2&4=0.002000	
34	Target Setup.Swirling1&3=4.194000	
35	Propagation Parameters.Extra Att fix=0.000000	
36	Propagation Parameters.Extra Att var=0.000000	
37	Propagation Parameters.Lens-effect?=FALSE	≡
38	Propagation Parameters.Atmospheric att.=FALSE	
39	Propagation Parameters.VPD model=1	
40	Manual RTG operation.Sample Offset=0.200000	
41	Manual RTG operation.Freq Measurement Period=6	
42	Manual RTG operation Acurecy:=5.859375	
43	Manual RTG operation. Trigger=-10.000000	
44	Manual KTG operation.crig U.9121/0	
45	Manual KTG operation.Joppier Update=U	
40	Manual KTG operation.TTL Gate Width-100.000000	
47	Manual RTG operation.TTL Trigger Out-FALSE	
40	Manual RTG operation.TTH Gate Out-FALSE	\mathbf{v}
< 12		
nb char : 2051	Ln:1 Col:1 Sel:0 Dos\Windows ANSI INS	

Figure 33: Preferences file for RTG on site target injection software

4.2.4.3. RECORD command

The record command will start recording in a preloaded RASS-S tool , and is similar as clicking the "Record"

log files 5 💽 🗁 🛑 💵

The record command syntax is .

RASS -c "RECORD *vi_reference [Filename]*" (example RASS - c "RECORD 246 "PulsRecOnsite" ")

Mind the Double quotes! The (optional) filename is a string that needs to be enclosed in quotes.

Beware! The filename should not contain SPACE (\20) characters.

The vi_refence is the index number of the tool in the internal RASS-S application database list.

The Filename is the name of the recording folder (directory) in the current CAMPAIGN folder of RASS-S.

Filename can be a single folder or a full patch (e.g. D:\CAMPAIGN-S6\DEMO\RECORDING\PulsRecOnsite)

4.2.4.4. STOP command

The stop commands will stop a running RASS-S tool , and is similar as clicking the "Stop" button on a tool.

. (Not the DONE button!) The stop command syntax is .

RASS -c "STOP vi_reference " (example RASS - c "STOP 246")

The vi_refence is the index number of the tool in the internal RASS-S application database list.

4.2.4.5. CLOSE command

The Close command will abort and close a running RASS-S tool , and is similar as clicking the "Done"

button on a tool. Provide the close command syntax is .

RASS -c "CLOSE vi_reference " (example RASS - c "CLOSE 246")

The vi_refence is the index number of the tool in the internal RASS-S application database list.

4.2.4.6. STATUS command

The status commands will return the current status of a running vi. It can be used to verify if a scenario for example has finished running.

The status command syntax is .

RASS -c "STATUS vi_reference " (example RASS - c "STATUS 246")

The vi_refence is the index number of the tool in the internal RASS-S application database list.

The command will return a number ;

0: RTG1002 not started

1: RTG1002 detected and booted

- 2: RTG1002 has started (scenario running)
- 3: RTG1002 has stopped (scenario ended or stopped manually)
- 4: RTG1002 error RTG not found

4.2.5. EXAMPLE

The following snapshot shows some example implementation from the command line. The RASS-S toolbox is running.

These instructions will open the software and run the tool for On site target injection.

A scenario will be downloaded and executed.

Pulse information will be recorded.

The tool will be stopped.

C:\WINDOWS\system32\cmd.exe - 0 D:\>cd RASS-S7 D:\RASS-S7>cd lvxmlrpcSErver D:\RASS-S7\LUXMLRPCServer>RASS --help Version : 1.2.0 Allowed options: produce help message configuration file path directory path for logfiles Mask for logging detail XMLRPC host XMLRPC host port number command arguments -help -conf conf arg logfileDir arg --logLevel arg --host] arg --port] arg −h [−p [-p ſ command] arg D:\RASS-S7\LUXMLRPCServer>RASS -c "LOAD 246 2" D:\RASS-S7\LUXMLRPCServer>RASS -c "STATUS 246" D:\RASS-S7\LUXMLRPCServer>RASS -c ''START 246 ''D:\CAMPAIGN-S6\DEMO\SCENARIO\PSR'''' D:\RASS-S7\LUXMLRPCServer>RASS -c "STATUS 246" D:\RASS-S7\LUXMLRPCServer>RASS -c "STOP 246" D:\RASS-S7\LUXMLRPCServer>RASS -c "STATUS 246" D:\RASS-S7\LUXMLRPCServer>RASS -c "RECORD 246 "PulsRecOnsite"" D:\RASS-S7\LUXMLRPCServer>RASS -c "CLOSE 246" D:\RASS-S7\LUXMLRPCServer>RASS -c "STATUS 246" D:\RASS-S7\LUXMLRPCServer>_

Figure 34: Example of RPC via the DOS command prompt

.