

RADCORE - Radar Data Convertor and Recorder

Edition: 005 Date: 12-Oct-16 Status: Released Issue

Blank Page

DOCUMENT CHARACTERISTICS

General		
RADCORE		
RDCR992		
Edition:	005	
Edition Date:	12-October-2016	
Status:	Released Issue	
Keywords:	RADCORE, RMCDE, RASS-R, ASTERIX	
Abstract:	This document is the usermanual and technical manual of the RADCORE or Radar Data Convertor and Recorder. The product number is RDCR992.	

Contact Information		
Author:	Mike Martin	
Editor:	Glenn Bosmans	
Contact Person:	Mike Martin, Glenn Bosmans	
Tel:	+61 2 6241 9237 (Canberra office) or +32 14 23 18 11 (Belgium office)	
E-mail Address:	support@ie-asia-pacific.com or support@intersoft-electronics.com	

Document Control Information		
Document Name:	IE-UM-00384-005 RDCR992.odt	

DOCUMENT CHANGE RECORD

Revision	Date	Reasons for change	Pages Affected	Approved by
001	28-MAY-12	First edition; User Manual Compatible with SW versions: - DHM 2.12.0 - Watchdog: 2.1.0.0 Compiled from the RDCR993 User Manual	All	ММ
002	8-DEC-14	Chapter Intel Rapid Storage added; glossary updated.	21 and further, 7	BS
003	8-AUG-15	Removed software section	17,19	BOG
004	10-OCT-16	New layout RDCR992	10,11,16	BOG
005	12-OCT-16	Chapter Intel Rapid Storage removed	-	BOG

TABLE OF CONTENTS

1. INTRODUCTION	9
1.1. Flexible and redundant in hardware	9
1.2. Modular in software: protocol convert and recording	10
1.3. Recording and analysis of the data	10
2. RDCR992 HARDWARE	11
2.1. General specifications	13
2.1.1. Temperature of the RDCR992: 2.1.2. Start-up time of the RDCR992:	13 13
2.2. Serial interfaces	14
2.3. Digital interface	15
2.4. Embedded PC	16
2.4.1. Specific BIOS settings 2.4.2. RAID Configuration	
2.5. Front panel LEDs and switches	17
3. RDCR992 Software	18
3.1. Operating System	
4. Buffering mechanism	18
5. MICRO REDUNDANT POWER SUPPLY	

TABLE OF FIGURES

Figure 1.1: RDCR992 with embedded PC and optional KVM connection	9
Figure 1.2: Serial and Ethernet interfaces on RDCR992	9
Figure 2.1: Inside view of RDCR992	11
Figure 2.2: RDCR992 rear panel	12
Figure 2.3: Serial and timing interfaces	15
Figure 2.4: Embedded PC rear panel	
Figure 2.5: Front panel LEDs.	17
Figure 5.1: Micro-redundant power supply	19
Figure 5.2: Single Power Supply Unit or PSU	20

TABLE OF TABLES

Table 2.1: General specifications	13
Table 2.2: Serial interfaces	14
Table 2.3: DB15 layout	14
Table 2.4: Digital interface	15
Table 2.5: DB15HD pin layout	15

CONVENTIONS USED

Note: This icon to the left of bold italicized text denotes a note, which alerts you to important information.

Caution: This icon to the left of bold italicized text denotes a caution, which alerts you to the possibility of data loss or a system crash.

Warning: This icon to the left of bold italicized text denotes a warning, which alerts you to t he possibility of damage to you or your equipment.

. . .

GLOSSARY OF TERMS

ACP	Azimuth Change Pulse	
ARP	Azimuth Reference Pulse	
ASTERIX	All Purpose STructured Eurocontrol suRveillance Information	
	EXchange	
ATM	Air Traffic Management	
BIOS	Basic Input/Output System	
CMOS	Complementary Metal-Oxide Semiconductor	
COTS	Commercial Off The Shelf	
CPU	Computer Processing Unit	
DHM	Data Handling Module	
Gb	gigabyte	
GPS	Global Positioning System	
GPS450	GPS unit manufactured by Intersoft Electronics	
ICD	Interface Control Document	
IE	Intersoft Electronics	
IP	Internet Protocol	
KVM	Keyboard, Video, Mouse, can be optionally connected to the	
	RDCR992	
LAN	Local Area Network	
LED	Light-Emitting Diode	
NMEA	National Marine Electronics Association is an international	
	standardized message structure that can be used as time	
	message	
NTP	Network Time Protocol	
PC	Personal Computer	
PCB	Printed Circuit Board	
PPS	Pulse Per Second, as output by a GPS	
PSU	Power Supply Unit	
RADCORE	Radar Data Convertor and Recorder	
RAID	Redundancy Array of Independent Disks	
RASS-R	Radar Analysis Support Systems – Real-time measurements	
RASS-S	Radar Analysis Support Systems – Site measurements	
RDCR992	Radar Data Convertor and Recorder, product number 992	
RMCDE	Radar Message Conversion and Distribution Equipment	
RTQC	Real Time Quality Control	
SATA	Serial ATA, bus interface to connect hard disks	
SNMP	Simple Network Management Protocol	
ТСР	Transmission Control Protocol	
UDP	User Datagram Protocol	
UDR	USB Data Recorder	
USB	Universal Serial Bus	
	On and in a tank I have an a little a	

1. INTRODUCTION

RADCORE, or **Radar Data Convertor and Recorder** is a vital part in connecting a surveillance sensor with an ATC centre, with the ability of a smooth integration of legacy radars in new ATM systems or vice versa.

The combination of **protocol converting** and **data recording simultaneously**, makes Intersoft Electronics' RADCORE the tool for real time **Radar Message Converting and Distribution** (RMCDE equipment) and offline performance evaluation analysis (like ASTERIX validation). Redundant in hardware and modular in software: the RDCR992 will prove to be an invaluable part in the complete radar to ATM processing chain.

Figure 1.1: RDCR992 with embedded PC and optional KVM connection

1.1. Flexible and redundant in hardware

RADCORE has **4 serial interfaces** which are completely configurable in software. They support various electrical interfaces. It contains an embedded PC with 2 Ethernet interfaces. Therefore, it supports any ATM network architecture: format convert and protocol convert from serial to Ethernet and from Ethernet to serial, or only protocol convert from Ethernet to Ethernet or serial to serial. The additional ACP/ARP input makes it possible to calculate the radar head processor delay.

Figure 1.2: Serial and Ethernet interfaces on RDCR992

.

.

1.2. Modular in software: protocol convert and recording

RADCORE contains an **embedded PC**, which runs the **RASS-R Data Handling Module (DHM)**, consisting of a **Data Handling Background Server** and **Data Handling Configuration Manager**. In the **graphical user interface**, a radar technician can easily program the input and output of the RDCR992: choose which serial and/or Ethernet port(s) serve as input and output, select the appropriate protocol convert to make and configure the right settings for radar message convert and distribution (RMCDE) and data recording. It is even possible to change in real time a North alignment, or add a range / azimuth offset to the data. When the eccentricity error of the radar encoder is measured, it can be corrected in real time by the DHM processing.

The embedded PC is an **Intel based chipset** with recording capabilities of at least 250GBytes. Connection to the embedded PC can be made with either a remote desktop connection, KVM device directly connected to the rear panel or an Ethernet connection between DHM Background Server and Configuration Manager.

Two Available Gigabit Ethernet ports offer a lot of possibilities. For example, a spare (non-operational) port for remote connection or for synchronization with an external NTP server. Because the RASS-R DHM tool on the embedded PC is a widely proven software tool, it offers unlimited features. For example, a **WatchDog Timer** and **generation of SNMP messages** and alarms for integration in an ATM network monitoring system.

1.3. Recording and analysis of the data

Data recordings made by the RDCR992 are suitable for advanced data replay and further evaluation in **RASS-S** (inventory tool, protocol viewer, **ASTERIX and other protocol validation**), RASS-R (Radar Comparator Mono/ Dual) or for continuous monitoring in the RASS-R Surveillance Monitoring System (SMS).

2. RDCR992 HARDWARE

The following picture is an inside view of the RDCR992:

Figure 2.1: Inside view of RDCR992

The RDCR992 contains the following hardware components as can be seen in the picture above:

- **Two serial interfaces or UDR600 (green)**, each having 2 serial ports, connected to the rear side of the RDCR992
- A micro-redundant power supply (yellow): to power the embedded PC and UDR600 with 12V and 3V.

.

• A front panel PCB (magenta): to host the watchdog functionality and system interconnection. For

the description of the Watchdog, refer to the user manual of the Watchdog.

- An embedded PC(blue): to run the radar data protocol convert software, i.e. the DHM.
- Two hard-disks (red): for recording of the data.

The different modules are discussed in detail in the following paragraphs.

Figure 2.2 shows the rear panel of the RDCR992.

Figure 2.2: RDCR992 rear panel

2.1. General specifications

General specifications		
Dimensions WxHxD (mm) and weight	435.8x82.1x360, 19" plug-in box with handles and perforated cover and bottom plate, 7.5kg	
Micro redundant hot swappable power supply (PSU)	AC Input: 100-240VAC, 47-63Hz 4-2A DC Output: ATX 12V, 275Watt max. with audible warning and error LED on front panel, reset button in case of faulty power supply, built-in fan	
Embedded computer	Mini-ITX PC with Intel Q45 chipset, Intel Core 2 Quad CPU Q9550S 2.8Ghz 1333 12Mb, min. 2GB DDR3 RAM and 2x250GB SATA harddisk in RAID 1 configuration for redundancy, Intel Gen 5.0 integrated Graphics Engine, VGA/DVI output, 2 Gigabit Ethernet ports, 4 USB 2.0, 1 COM port;	
Watchdog Timer (WDT)	Built-in WDT in separate micro-controller, with system error LED on front panel	
Input for ACP/ARP/Trigger and PPS	DB15HD connector (with output to redundant RDCR992)	
NMEA input for UTC time synchronization (coming from Intersoft GPS or time server)	Input for NMEA time string on serial port DB9 female connector (with output to redundant RDCR992)	
Environmental conditions: Ambient Temperature Range Relative Humidity Max. operating altitude	0 - 50 degrees C (operating), -30 – 50 degrees C (Non-operating) 10% to 80% 3080 m	
Regulatory Compliance	Rohs. WEEE	
Startup time	cold boot (from power shutdown): 90 seconds boot after restart by Watchdog: 140 seconds	
Reliability figures according MIL-HDBK217	MTBF (only embedded PC and serial interfaces UDR600): 28935 hours MTBF (total unit): 13746 hours	

Table 2.1: General specifications

2.1.1. Temperature of the RDCR992:

The RDCR992 is tested on operational use between 0 and 50 degrees Celsius. In case that the ambient temperature keeps rising, the CPU will stop functioning at 76.3 degrees Celsius at 65Watt. When reaching this maximum temperature, the mechanism of ThermTripping will be activated in order to reduce the heat in the CPU. When the maximum case temperature of the CPU is reached, it will turn the embedded PC off.

2.1.2. Start-up time of the RDCR992:

RDCR992 has two different ways to re-start :cold boot¹ and warm boot². The start-up time for a cold boot is approximately 1 minute and 30 seconds to fully operational. In case of a warm boot (watchdog reset or manual restart) is the start-up time approximately 2 minutes to fully operational. The boot time in this case is longer because you have include the shutdown action of windows.

² Refers to restarting a computer that is already turned on via the operating system. Restarting it returns the computer to its initial state. Also called a "soft boot".

¹ The start-up of a computer from a powered-down, or off, state. Also called "hard boot"

2.2. Serial interfaces

As one can see on the rear panel of the RDCR992, it contains 4 serial channels numbered 1 to 4 on a **DB15 female serial connector**(refer to Figure 2.3). In the DHM software, they can be configured for input/output RS232/RS422.

RS 232 C Receivers (Compatible with RS232C standard)		
Input Resistance	3 kΩ min, 5kΩ typ, 7 kΩ max	
Low threshold	1.2V typ, 0.8 min.	
High threshold	1.7V typ, 3.0 max.	
Impedance	5kΩ typ (+15V to -15V)	
RS 232 C Drivers (Compatible with RS232C standard)		
High Level Output	+5V min, +15V max	
Low Level Output	-15V min, -5V max	
Short Circuit Current	±100 mA	
Power off Impedance	300Ω	
Slew Rate	RL=3K, CL=50pF 30V/µs	
RS 485 ³ Receivers (Compatible with RS485 standard)		
Input resistance common mode	12kΩmin, 15kΩ typ	
Receiver sensitivity	±0,2V typ, ±0,3V max	
Common Mode Range	-7.0V min, +7.0V max.	
Impedance	15kΩ typ (-7 to +12V)	
RS 485 Drivers (Compatible with RS485 standard)		
Short Circuit Current	±250 mA	
Transition Time	30 ns typ, 50 ns max. (10-90%)	
Output current	28 mA min (RL=54Ω)	

Table 2.2: Serial interfaces

The pin-layout of the serial channel is as follows:

DB15 pin layout	DB15 pin layout
Gnd	1, 8
TxD+ / TxD-A	9
TxD- / TxD-B	2
RxD+ / RxD-A	11
RxD- / RxD-B	4
RxC+ / RxC-A	13
RxC- / RxC-B	6
TrxC+ / TrxC-A	14
TrxC- / TrxC-B	7

Table 2.3: DB15 layout

³ The signal levels and drive capability of the RS-485 drivers allow the drivers to also comply with RS-422 levels.

In case RS232 is selected as input/output layer, only the negative pins are enabled. In case RS422 is selected, both negative and positive pins are used.

and the

The DHM software that controls the RDCR992, can only use channel 1 and 2 as input or output, but not mixed (not possible is channel 1 as input and channel 2 as output or vice versa). The same is true for channel 3 & 4.

2.3. Digital interface

The SK600 is a digital interface to connect **timing signals from the radar**, i.e. trigger/ACP/ARP. Both SK600 connectors are connected to each other so both can be used as input or output. In case of output, this connection can be used to stack the timing signals to another (redundant) RDCR992. In case the dedicated GPS450 is connected, the PPS and GPS data will also be sent on the SK600 that is stacked to another RDCR992.

Digital interface		
Timing in/out SK600	TTL, 10 kΩ (max 05 V input)	
GPS	Dedicated interface to GPS450	

Table 2.4: Digital interface

The pin-layout of the SK600 channel is as follows:

SK600	DB15HD pin layout
ARP	1
ACP	2
PPS Event (on the condition that a GPS450 is connected)	3
GPS data (on the condition that a GPS450 is connected)	5
Trigger	14

Table 2.5: DB15HD pin layout

Figure 2.3: Serial and timing interfaces

2.4. Embedded PC

The embedded PC installed in the RDCR992 is equipped with the following characteristics:

- Hard-disk: Typically 2 x 250GB 2.5in SATA 7200rpm in a Trayless Hot Swap SATA Mobile Rack Backplane; configured in RAID1 (mirror).
- Operating system: Windows 7 (license tag can be found on top of the micro-redundant power supply, inside the RDCR992) or Linux.
- Installed software: RASS-R DHM, Watchdog and IE-Proxy
- Network ports are configured as follows: (viewed from rear side) •
 - left enabled with static IP 192.168.0.1 and subnet 255.255.255.0. Remote desktop is enabled to the embedded PC.
 - Right: disabled (Default). This is configurable via the operating system.

The rear panel for the peripherals to be connected looks as follows: Etherne

Figure 2.4: Embedded PC rear panel

2.4.1. Specific BIOS settings

Prevent the PC from stopping starting up when no keyboard connected: •

In the BIOS, select Standard CMOS Features >> Halt On >> All, But Keyboard.

After power restoration, the RDCR992 should start up automatically:

In the BIOS, select Integrated Peripherals >> SuperIO Device >> PWRON After PWR-Fail >> ON.

BIOS can be accessed by pressing the DEL button during the start up and on condition that a KVM device is connected to the embedded PC.

2.4.2. **RAID Configuration**

By default, RAID 1 (mirror) has been configured. Other RAID configurations are available via the Configuration Utility, accessed during start up. (see also chapter Error: Reference source not found)

Configuration Utility can be accessed by pressing the CTRL-I button during the start up and on condition that a KVM device is connected to the embedded PC.

2.5. Front panel LEDs and switches

The front panel has the following LEDs and switches:

Figure 2.5: Front panel LEDs

- **Power on switch**: turns on the RDCR992.
- Reset button: resets the total RDCR992 (including a hard reset of the embedded PC).
- **Power on LED**: shows that the RDCR992 has been turned on.
- **RxD LEDs**: shows the presence of data on the receive lines of each channel 1 to 4.
- **TxD LEDs**: shows the presence of data on the transmit lines of each channel 1 to 4.
- **Power Supply Error**: this LED is triggered by the micro-redundant power supply and turns on when one power supply is faulty.
- System Error: this LED is triggered by the Watchdog Timer in the micro-controller.
- 2 USB ports

3. RDCR992 SOFTWARE

3.1. Operating System

The RDCR992 is supplied preinstalled with either Windows7 or Linux, depending on the end user's requirement.

4. **B**UFFERING MECHANISM

All DHM modules have their own circular **input** buffer with a fixed size of 256 elements and configured in **no-override mode**.

The buffer mechanism is a cascaded based system, because the buffer of the corresponding module is filled by the previous module is the session.

When a buffer is full the module that's writing in that particular buffer will wait until there is space. Meanwhile the buffer of the module that's waiting for space will start filling up. This phenomenon of waiting and buffer filling will continue until all modules are waiting for writing data.

This cascade will continue until the buffer of the inputting UDR module is full and no data will be lost due to the "wait to write" mechanism (buffer no-override mode, module needs to wait until there is space). From the moment the UDR module is full, no data can enter the RDCR992 or the RDCR convert session and data will be lost.

The size of each module is fixed to 256 elements but the amount of data that every buffer can contain depends on the message type that the previous module outputs. Each element stores 1 output message of the previous module.

Although every buffer is the same in size (number of elements) they can contain a different number of targets.

5. MICRO REDUNDANT POWER SUPPLY

The RDCR992 contains a micro redundant power supply that consists of 2 single PSUs (refer to Figure 5.2) Both power supplies run continuously, to power the RDCR992. The RDCR992 requires a single PSU to operate.

Each PSU contains a fan which blows air out the RDCR992. The green LED on the PSU chassis shows if the PSU is operation or not. In case one of the two PSU's fails, the Power Supply Error LED on the front panel (Figure 2.5) will start blinking and an audible alarm will sound. The audible alarm can be reset by the red reset button at the rear of the power supply chassis. The Power Supply Error LED will turn off once the error has been corrected.

Figure 5.1 shows the two PSUs with the red reset button on the rear of the RDCR992.

Figure 5.1: Micro-redundant power supply

Figure 5.2: Single Power Supply Unit or PSU

αð

The PSU will not give a signal nor audible alarm when the fan is broken or maximum operating temperature is exceeded.

